skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thapa, Subhadra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Peptide coassembly offers novel opportunities for designing advanced nanomaterials. This study used coarse-grained molecular dynamics simulations to examine the coassembly of charge-complementary peptides, assessing various ratios and the role of charge and hydrophobicity in their aggregation. We discovered that peptide length, charge, and hydrophobicity significantly influence coassembly behavior, with more hydrophobic peptides exhibiting greater aggregation despite electrostatic repulsion. Beyond the coassembly of two peptides, we also observed that the coassembly of more than two peptides will likely lead to new assembly structures and properties. Our findings underscore the importance of peptide composition and length in tuning the coassembly and the resulting properties, thus facilitating the design of complex peptide nanoparticles for biomedical and biotechnological applications. 
    more » « less
    Free, publicly-accessible full text available May 8, 2026